Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 294
Filter
1.
Scand J Med Sci Sports ; 34(4): e14625, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38597357

ABSTRACT

Heightened sensation of leg effort contributes importantly to poor exercise tolerance in patient populations. We aim to provide a sex- and age-adjusted frame of reference to judge symptom's normalcy across progressively higher exercise intensities during incremental exercise. Two-hundred and seventy-five non-trained subjects (130 men) aged 19-85 prospectively underwent incremental cycle ergometry. After establishing centiles-based norms for Borg leg effort scores (0-10 category-ratio scale) versus work rate, exponential loss function identified the centile that best quantified the symptom's severity individually. Peak O2 uptake and work rate (% predicted) were used to threshold gradually higher symptom intensity categories. Leg effort-work rate increased as a function of age; women typically reported higher scores at a given age, particularly in the younger groups (p < 0.05). For instance, "heavy" (5) scores at the 95th centile were reported at ~200 W (<40 years) and ~90 W (≥70 years) in men versus ~130 W and ~70 W in women, respectively. The following categories of leg effort severity were associated with progressively lower exercise capacity: ≤50th ("mild"), >50th to <75th ("moderate"), ≥75th to <95th ("severe"), and ≥ 95th ("very severe") (p < 0.05). Although most subjects reporting peak scores <5 were in "mild" range, higher scores were not predictive of the other categories (p > 0.05). This novel frame of reference for 0-10 Borg leg effort, which considers its cumulative burden across increasingly higher exercise intensities, might prove valuable to judging symptom's normalcy, quantifying its severity, and assessing the effects of interventions in clinical populations.


Subject(s)
Exercise Test , Leg , Male , Humans , Female , Reference Values , Ergometry , Exercise , Oxygen Consumption
2.
COPD ; 21(1): 2301549, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38348843

ABSTRACT

Exertional dyspnea, a key complaint of patients with chronic obstructive pulmonary disease (COPD), ultimately reflects an increased inspiratory neural drive to breathe. In non-hypoxemic patients with largely preserved lung mechanics - as those in the initial stages of the disease - the heightened inspiratory neural drive is strongly associated with an exaggerated ventilatory response to metabolic demand. Several lines of evidence indicate that the so-called excess ventilation (high ventilation-CO2 output relationship) primarily reflects poor gas exchange efficiency, namely increased physiological dead space. Pulmonary function tests estimating the extension of the wasted ventilation and selected cardiopulmonary exercise testing variables can, therefore, shed unique light on the genesis of patients' out-of-proportion dyspnea. After a succinct overview of the basis of gas exchange efficiency in health and inefficiency in COPD, we discuss how wasted ventilation translates into exertional dyspnea in individual patients. We then outline what is currently known about the structural basis of wasted ventilation in "minor/trivial" COPD vis-à-vis the contribution of emphysema versus a potential impairment in lung perfusion across non-emphysematous lung. After summarizing some unanswered questions on the field, we propose that functional imaging be amalgamated with pulmonary function tests beyond spirometry to improve our understanding of this deeply neglected cause of exertional dyspnea. Advances in the field will depend on our ability to develop robust platforms for deeply phenotyping (structurally and functionally), the dyspneic patients showing unordinary high wasted ventilation despite relatively preserved FEV1.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/complications , Exercise Tolerance/physiology , Lung , Dyspnea/etiology , Spirometry , Exercise Test
4.
Article in English | MEDLINE | ID: mdl-38170674

ABSTRACT

RATIONALE: It is increasingly recognized that adults with preserved ratio impaired spirometry (PRISm) are prone to increased morbidity. However, the underlying pathophysiological mechanisms are unknown. OBJECTIVES: Evaluate the mechanisms of increased dyspnea and reduced exercise capacity in PRISm. METHODS: We completed a cross-sectional analysis of the CanCOLD population-based study. We compared physiological responses in 59 participants meeting PRISm spirometric criteria (post-bronchodilator FEV1<80% predicted and FEV1/FVC≥0.7), 264 controls, and 170 ever-smokers with chronic obstructive pulmonary disease (COPD), at rest and during cardiopulmonary exercise testing (CPET). MEASUREMENTS AND MAIN RESULTS: PRISm had lower total lung, vital and inspiratory capacities than controls (all p<0.05), and minimal small airway, pulmonary gas-exchange, and radiographic parenchymal lung abnormalities. Compared with control, PRISm had higher dyspnea/oxygen uptake [V̇O2] ratio at peak exercise (4.0±2.2vs2.9±1.9, Borg units/L/min, p<0.001) and lower V̇O2peak (74±22vs96±25% predicted, p<0.001). At standardized submaximal work rates, PRISm had greater tidal volume/inspiratory capacity (VT%IC, p<0.001), reflecting inspiratory mechanical constraint. In contrast to PRISm, COPD had characteristic small airways dysfunction, dynamic hyperinflation, and pulmonary gas-exchange abnormalities. Despite these physiological differences between the 3 groups, the relationship between increasing dyspnea and VT%IC during CPET was similar. Resting IC significantly correlated with V̇O2peak (r=0.65, p<0.001) in the entire sample, even after adjusting for airflow limitation, gas-trapping and diffusing capacity. CONCLUSION: In PRISm, lower exercise capacity and higher exertional dyspnea than healthy controls were mainly explained by lower resting lung volumes and earlier onset of dynamic inspiratory mechanical constraints at relatively low work rates.

7.
Respir Care ; 68(12): 1662-1674, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-37643871

ABSTRACT

BACKGROUND: The precise mechanisms driving poor exercise tolerance in patients with fibrotic interstitial lung diseases (fibrotic ILDs) showing a severe impairment in single-breath lung diffusing capacity for carbon monoxide (DLCO < 40% predicted) are not fully understood. Rather than only reflecting impaired O2 transfer, a severely impaired DLCO may signal deranged integrative physiologic adjustments to exercise that jointly increase the burden of exertional symptoms in fibrotic ILD. METHODS: Sixty-seven subjects (46 with idiopathic pulmonary fibrosis, 24 showing DLCO < 40%) and 22 controls underwent pulmonary function tests and an incremental cardiopulmonary exercise test with serial measurements of operating lung volumes and 0-10 Borg dyspnea and leg discomfort scores. RESULTS: Subjects from the DLCO < 40% group showed lower spirometric values, more severe restriction, and lower alveolar volume and transfer coefficient compared to controls and participants with less impaired DLCO (P < .05). Peak work rate was ∼45% (vs controls) and ∼20% (vs DLCO > 40%) lower in the former group, being associated with lower (and flatter) O2 pulse, an earlier lactate (anaerobic) threshold, heightened submaximal ventilation, and lower SpO2 . Moreover, critically high inspiratory constrains were reached at lower exercise intensities in the DLCO < 40% group (P < .05). In association with the greatest leg discomfort scores, they reported the highest dyspnea scores at a given work rate. Between-group differences lessened or disappeared when dyspnea intensity was related to indexes of increased demand-capacity imbalance, that is, decreasing submaximal, dynamic ventilatory reserve, and inspiratory reserve volume/total lung capacity (P > .05). CONCLUSIONS: A severely reduced DLCO in fibrotic ILD signals multiple interconnected derangements (cardiovascular impairment, an early shift to anaerobic metabolism, excess ventilation, inspiratory constraints, and hypoxemia) that ultimately lead to limiting respiratory (dyspnea) and peripheral (leg discomfort) symptoms. DLCO < 40%, therefore, might help in clinical decision-making to indicate the patient with fibrotic ILD who might derive particular benefit from pharmacologic and non-pharmacologic interventions aimed at lessening these systemic abnormalities.


Subject(s)
Lung Diseases, Interstitial , Lung , Humans , Lung Diseases, Interstitial/complications , Lung Diseases, Interstitial/diagnosis , Dyspnea , Respiratory Function Tests , Respiration , Exercise Test , Pulmonary Diffusing Capacity , Exercise Tolerance/physiology
9.
Ann Am Thorac Soc ; 20(10): 1425-1434, 2023 10.
Article in English | MEDLINE | ID: mdl-37413694

ABSTRACT

Rationale: Ventilatory demand-capacity imbalance, as inferred based on a low ventilatory reserve, is currently assessed only at peak cardiopulmonary exercise testing (CPET). Peak ventilatory reserve, however, is poorly sensitive to the submaximal, dynamic mechanical ventilatory abnormalities that are key to dyspnea genesis and exercise intolerance. Objectives: After establishing sex- and age-corrected norms for dynamic ventilatory reserve at progressively higher work rates, we compared peak and dynamic ventilatory reserve for their ability to expose increased exertional dyspnea and poor exercise tolerance in mild to very severe chronic obstructive pulmonary disease (COPD). Methods: We analyzed resting functional and incremental CPET data from 275 controls (130 men, aged 19-85 yr) and 359 Global Initiative for Chronic Obstructive Lung Disease patients with stage 1-4 obstruction (203 men) who were prospectively recruited for previous ethically approved studies in three research centers. In addition to peak and dynamic ventilatory reserve (1 - [ventilation / estimated maximal voluntary ventilation] × 100), operating lung volumes and dyspnea scores (0-10 on the Borg scale) were obtained. Results: Dynamic ventilatory reserve was asymmetrically distributed in controls; thus, we calculated its centile distribution at every 20 W. The lower limit of normal (lower than the fifth centile) was consistently lower in women and older subjects. Peak and dynamic ventilatory reserve disagreed significantly in indicating an abnormally low test result in patients: whereas approximately 50% of those with a normal peak ventilatory reserve showed a reduced dynamic ventilatory reserve, the opposite was found in approximately 15% (P < 0.001). Irrespective of peak ventilatory reserve and COPD severity, patients who had a dynamic ventilatory reserve below the lower limit of normal at an isowork rate of 40 W had greater ventilatory requirements, prompting earlier attainment of critically low inspiratory reserve. Consequently, they reported higher dyspnea scores, showing poorer exercise tolerance compared with those with preserved dynamic ventilatory reserve. Conversely, patients with preserved dynamic ventilatory reserve but reduced peak ventilatory reserve reported the lowest dyspnea scores, showing the best exercise tolerance. Conclusions: Reduced submaximal dynamic ventilatory reserve, even in the setting of preserved peak ventilatory reserve, is a powerful predictor of exertional dyspnea and exercise intolerance in COPD. This new parameter of ventilatory demand-capacity mismatch may enhance the yield of clinical CPET in the investigation of activity-related breathlessness in individual patients with COPD and other prevalent cardiopulmonary diseases.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Male , Humans , Female , Reference Values , Lung , Dyspnea/etiology , Exercise Test , Exercise Tolerance
11.
Thorax ; 78(10): 974-982, 2023 10.
Article in English | MEDLINE | ID: mdl-37147124

ABSTRACT

BACKGROUND: Infections are considered as leading causes of acute exacerbations of chronic obstructive pulmonary disease (COPD). Non-infectious risk factors such as short-term air pollution exposure may play a clinically important role. We sought to estimate the relationship between short-term air pollutant exposure and exacerbations in Canadian adults living with mild to moderate COPD. METHODS: In this case-crossover study, exacerbations ('symptom based': ≥48 hours of dyspnoea/sputum volume/purulence; 'event based': 'symptom based' plus requiring antibiotics/corticosteroids or healthcare use) were collected prospectively from 449 participants with spirometry-confirmed COPD within the Canadian Cohort Obstructive Lung Disease. Daily nitrogen dioxide (NO2), fine particulate matter (PM2.5), ground-level ozone (O3), composite of NO2 and O3 (Ox), mean temperature and relative humidity estimates were obtained from national databases. Time-stratified sampling of hazard and control periods on day '0' (day-of-event) and Lags ('-1' to '-6') were compared by fitting generalised estimating equation models. All data were dichotomised into 'warm' (May-October) and 'cool' (November-April) seasons. ORs and 95% CIs were estimated per IQR increase in pollutant concentrations. RESULTS: Increased warm season ambient concentration of NO2 was associated with symptom-based exacerbations on Lag-3 (1.14 (1.01 to 1.29), per IQR), and increased cool season ambient PM2.5 was associated with symptom-based exacerbations on Lag-1 (1.11 (1.03 to 1.20), per IQR). There was a negative association between warm season ambient O3 and symptom-based events on Lag-3 (0.73 (0.52 to 1.00), per IQR). CONCLUSIONS: Short-term ambient NO2 and PM2.5 exposure were associated with increased odds of exacerbations in Canadians with mild to moderate COPD, further heightening the awareness of non-infectious triggers of COPD exacerbations.


Subject(s)
Air Pollutants , Air Pollution , Pulmonary Disease, Chronic Obstructive , Adult , Humans , Cross-Over Studies , Nitrogen Dioxide/adverse effects , Nitrogen Dioxide/analysis , Canada/epidemiology , Air Pollution/adverse effects , Air Pollution/analysis , Air Pollutants/adverse effects , Air Pollutants/analysis , Particulate Matter/adverse effects , Particulate Matter/analysis , Pulmonary Disease, Chronic Obstructive/epidemiology , Pulmonary Disease, Chronic Obstructive/etiology , Environmental Exposure/adverse effects , Environmental Exposure/analysis
15.
J Bras Pneumol ; 49(1): e20230028, 2023 03 17.
Article in English, Portuguese | MEDLINE | ID: mdl-36946819
16.
Chest ; 164(3): 637-649, 2023 09.
Article in English | MEDLINE | ID: mdl-36871842

ABSTRACT

BACKGROUND: Individuals with COPD and preserved ratio impaired spirometry (PRISm) findings in clinical settings have an increased risk of cardiovascular disease (CVD). RESEARCH QUESTION: Do individuals with mild to moderate or worse COPD and PRISm findings in community settings have a higher prevalence and incidence of CVD compared with individuals with normal spirometry findings? Can CVD risk scores be improved when impaired spirometry is added? STUDY DESIGN AND METHODS: The analysis was embedded in the Canadian Cohort Obstructive Lung Disease (CanCOLD). Prevalence of CVD (ischemic heart disease [IHD] and heart failure [HF]) and their incidence over 6.3 years were compared between groups with impaired and normal spirometry findings using logistic regression and Cox models, respectively, adjusting for covariables. Discrimination of the pooled cohort equations (PCE) and Framingham risk score (FRS) in predicting CVD were assessed with and without impaired spirometry. RESULTS: Participants (n = 1,561) included 726 people with normal spirometry findings and 835 people with impaired spirometry findings (COPD Global Initiative for Chronic Obstructive Lung Disease [GOLD] stage 1 disease, n = 408; GOLD stage ≥ 2, n = 331; PRISm findings, n = 96). Rates of undiagnosed COPD were 84% in GOLD stage 1 and 58% in GOLD stage ≥ 2 groups. Prevalence of CVD (IHD or HF) was significantly higher among individuals with impaired spirometry findings and COPD compared with those with normal spirometry findings, with ORs of 1.66 (95% CI, 1.13-2.43; P = .01∗) (∗ indicates statistical significane with P < .05) and 1.55 (95% CI, 1.04-2.31; P = .033∗), respectively. Prevalence of CVD was significantly higher in participants having PRISm findings and COPD GOLD stage ≥ 2, but not GOLD stage 1. CVD incidence was significantly higher, with hazard ratios of 2.07 (95% CI, 1.10-3.91; P = .024∗) for the impaired spirometry group and 2.09 (95% CI, 1.10-3.98; P = .024∗) for the COPD group compared to individuals with normal spirometry findings. The difference was significantly higher among individuals with COPD GOLD stage ≥ 2, but not GOLD stage 1. The discrimination for predicting CVD was low and limited when impaired spirometry findings were added to either risk score. INTERPRETATION: Individuals with impaired spirometry findings, especially those with moderate or worse COPD and PRISm findings, have increased comorbid CVD compared with their peers with normal spirometry findings, and having COPD increases the risk of CVD developing.


Subject(s)
Cardiovascular Diseases , Myocardial Ischemia , Pulmonary Disease, Chronic Obstructive , Humans , Cohort Studies , Cardiovascular Diseases/epidemiology , Forced Expiratory Volume , Canada/epidemiology , Risk Factors , Spirometry
17.
COPD ; 20(1): 135-143, 2023 12.
Article in English | MEDLINE | ID: mdl-36975041

ABSTRACT

Reduced lung diffusing capacity for carbon monoxide (DLCO) at rest and increased ventilation (⩒E)-carbon dioxide output (⩒CO2) during exercise are frequent findings in dyspneic smokers with largely preserved FEV1. It remains unclear whether low DLCO and high ⩒E-⩒CO2 are mere reflections of alveolar destruction (i.e. emphysema) or impaired pulmonary perfusion in non-emphysematous tissue contributes to these functional abnormalities. Sixty-four smokers (41 males, FEV1= 84 ± 13%predicted) underwent pulmonary function tests, an incremental exercise test, and quantitative chest computed tomography. Total pulmonary vascular volume (TPVV) was calculated for the entire segmented vascular tree (VIDA Vision™). Using the median % low attenuation area (-950 HU), participants were dichotomized into "Trace" or "Mild" emphysema (E), each group classified into preserved versus reduced DLCO. Within each emphysema subgroup, participants with abnormally low DLCO showed lower TPVV, higher ⩒E-⩒CO2, and exertional dyspnea than those with preserved DLCO (p < 0.05). TPVV (r = 0.34; p = 0.01), but not emphysema (r = -0.05; p = 0.67), correlated with lower DLCO after adjusting for age and height. Despite lower emphysema burden, Trace-E participants with reduced DLCO had lower TPVV, higher dyspnea, and lower peak work rate than the Mild-E with preserved DLCO (p < 0.05). Interestingly, TPVV (but not emphysema) correlated inversely with both dyspnea-work rate (r = -0.36, p = 0.004) and dyspnea-⩒E slopes (r = -0.40, p = 0.001). Reduced pulmonary vascular volume adjusted by emphysema extent is associated with low DLCO and heightened exertional ventilation in dyspneic smokers with minor emphysema. Impaired perfusion of non-emphysematous regions of the lungs has greater functional and clinical consequences than hitherto assumed in these subjects.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Pulmonary Emphysema , Male , Humans , Smokers , Pulmonary Diffusing Capacity , Pulmonary Emphysema/complications , Pulmonary Emphysema/diagnostic imaging , Lung/diagnostic imaging , Dyspnea/diagnostic imaging , Dyspnea/etiology , Tomography, X-Ray Computed
18.
Respir Physiol Neurobiol ; 312: 104041, 2023 06.
Article in English | MEDLINE | ID: mdl-36858334

ABSTRACT

The functional disturbances driving "out-of-proportion" dyspnoea in patients with fibrosing interstitial lung disease (f-ILD) showing only mild restrictive abnormalities remain poorly understood. Eighteen patients (10 with idiopathic pulmonary fibrosis) showing preserved spirometry and mildly reduced total lung capacity (≥70% predicted) and 18 controls underwent an incremental cardiopulmonary exercise test with measurements of operating lung volumes and Borg dyspnoea scores. Patients' lower exercise tolerance was associated with higher ventilation (V̇E)/carbon dioxide (V̇CO2) compared with controls (V̇E/V̇CO2 nadir=35 ± 3 versus 29 ± 2; p < 0.001). Patients showed higher tidal volume/inspiratory capacity and lower inspiratory reserve volume at a given exercise intensity, reporting higher dyspnoea scores as a function of both work rate and V̇E. Steeper dyspnoea-work rate slopes were associated with lower lung diffusing capacity, higher V̇E/V̇CO2, and lower peak O2 uptake (p < 0.05). Heightened ventilatory demands in the setting of progressively lower capacity for tidal volume expansion on exertion largely explain higher-than-expected dyspnoea in f-ILD patients with largely preserved dynamic and "static" lung volumes at rest.


Subject(s)
Dyspnea , Lung Diseases, Interstitial , Humans , Lung , Lung Diseases, Interstitial/complications , Lung Volume Measurements , Respiration , Exercise Test , Exercise Tolerance/physiology
19.
J Appl Physiol (1985) ; 134(3): 667-677, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36701483

ABSTRACT

Following pulmonary embolism (PE), a third of patients develop persistent dyspnea, which is commonly termed the post-PE syndrome. The neurophysiological underpinnings of exertional dyspnea in patients with post-PE syndrome without pulmonary hypertension (PH) are unclear. Thus, the current study determined if abnormally high inspiratory neural drive (IND) due, in part, to residual pulmonary gas-exchange abnormalities, was linked to heightened exertional dyspnea and exercise limitation, in such patients. Fourteen participants with post-PE syndrome (without resting PH) and 14 age-, sex-, and body mass index-matched healthy controls undertook pulmonary function testing and a symptom-limited cycle cardiopulmonary exercise test with measurements of IND (diaphragmatic electromyography), ventilatory requirements for CO2 (V̇e/V̇co2), and perceived dyspnea intensity (modified Borg 0-10 scale). Post-PE (vs. control) had a reduced resting transfer coefficient for carbon monoxide (KCO: 84 ± 15 vs. 104 ± 14%pred, P < 0.001) and peak oxygen uptake (V̇o2peak) (76 ± 14 vs. 124 ± 28%pred, P < 0.001). IND and V̇e/V̇co2 were higher in post-PE than controls at standardized submaximal work rates (P < 0.05). Dyspnea increased similarly in both groups as a function of increasing IND but was higher in post-PE at standardized submaximal work rates (P < 0.05). High IND was associated with low KCO (r = -0.484, P < 0.001), high V̇e/V̇co2 nadir (r = 0.453, P < 0.001), and low V̇o2peak (r = -0.523, P < 0.001). In patients with post-PE syndrome, exercise IND was higher than controls and was associated with greater dyspnea intensity. The heightened IND and dyspnea in post-PE, in turn, were strongly associated with low resting KCO and high exercise V̇e/V̇co2, which suggest important pulmonary gas-exchange abnormalities in this patient population.NEW & NOTEWORTHY This study is the first to show that increased exertional dyspnea in patients with post-pulmonary embolism (PE) syndrome, without overt pulmonary hypertension, was strongly associated with elevated inspiratory neural drive (IND) to the diaphragm during exercise, compared with healthy controls. The greater IND was associated with impairments in pulmonary gas exchange and significant deconditioning. Our results help to explain why many patients with post-PE syndrome report significant dyspnea at relatively low levels of physical activity.


Subject(s)
Hypertension, Pulmonary , Pulmonary Embolism , Humans , Dyspnea , Respiratory Function Tests , Pulmonary Gas Exchange/physiology , Exercise Test/methods , Exercise Tolerance/physiology
20.
SELECTION OF CITATIONS
SEARCH DETAIL
...